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Abstract. Aeolian sand dunes originate from wind flow and sand bed interactions. According to wind
properties and sand availability, they can adopt different shapes, ranging from huge motion-less star dunes
to small and mobile barchan dunes. The latter are crescentic and emerge under a unidirectional wind, with
a low sand supply. Here, a 3d model for barchan based on existing 2d model is proposed. After describing
the intrinsic issues of 3d modeling, we show that the deflection of particules in reptation due to the shape
of the dune leads to a lateral sand flux deflection, which takes the mathematical form of a non-linear
diffusive process. This simple and physically meaningful coupling method is used to understand the shape
of barchan dunes.

PACS. 45.70.-n Granular systems – 47.54.+r Pattern selection; pattern formation

1 Characteristics of barchan dunes

R.A. Bagnold opened the way to the physics of dunes
with his famous book: The physics of blown sand and
desert dunes [1]. From then on, a great deal of investiga-
tions – laboratory experiments [1–3], field measurements
[4–14] and numerical computations [15–23] – have been
conducted by geologists and physicists. In particular, a
large amount of work has been dedicated to the barchan,
a dune shaped by the erosion of a unidirectional wind on
a firm ground.

A side view of a barchan – see Figure 1 – shows
a rather flat aerodynamic structure. When viewed from
above, a barchan presents a crescentic shape with two
horns pointing downwind. A sharp edge – the brink line
– divides the dune in two areas: the windward side and
the slip face, where avalanches develop – see Figure 2. Be-
cause of a boundary layer separation along this sharp edge
[1,4,5], a large eddy develops downwind and wind speed
decreases dramatically. Therefore, the incoming blown
sand is dropped close to the brink line. That is why
the barchan is known to be a very good sand trap-
per. Sometimes, when the drift of sand is too large, an
avalanche occurs and grains are moved down the slip
face. In short, grains are dragged by the wind from the
windward side of the dune to the bottom of the slip-
face and, grain after grain, the dune moves. Field obser-
vations show that barchans can move up to 70 m/year
[14]. Their speed is dependent on wind power and on
their size: for the same wind strength, the velocity
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Fig. 1. Side view of a barchan dune. The main properties
of barchan dunes are outlined: two horns pointing downwind,
the slip-face and the flat main body. The barchan shown is
approximately 20 meters long and wide, and 2 meters high. The
slip-face angle is roughly 30◦ to the vertical, which corresponds
to the angle of repose of a sand-pile.
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Fig. 2. Barchan dune properties. Grains follow the wind direc-
tion, and sand flux is not strongly deflected by the dune relief.
As observed in the field, sand grains can escape from the horns,
but not from the main dune body. Instead, they are trapped
into the slip-face. This difference of behavior between the main
body and the horns is the key to understand the barchans.
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of barchans is roughly inversely proportional to their
heights [1,2,4,10,12]. Barchan dimensions range from 1
to 30 meters high, and from 10 to 300 meters long and
wide [1,4,5]. However, large barchans are often unsta-
ble, leading to complex structures called mega-barchans
[4,5]. More accurate analyses reveal that the height, width
and length are related by linear relationships [2,13] and
that no mature barchan dune smaller than one meter high
can be found: there is a minimal barchan size. Finally, the
last important characteristic of barchans, but much less
well-documented, is the sand leak at the tip of the horns
[1,4,5,24], where no recirculation bubble develops. This
shows that barchan dunes are three dimensional struc-
tures, whose center part and horns have totally different
trapping efficiency – see Figure 2.
Because of the inherent difficulties of field-work (a typical
mission duration is rather short compared to the lifetime
of a dune and its shape movement), numerical modeling is,
alongside laboratory experiment [3], an important method
to explore barchan properties such as their morphogene-
sis, their stability and their interaction modes, which are
still poorly understood. Obviously, these problems are re-
lated to the original structure of barchans, and, accord-
ingly, they should be studied with a 3d approach. The
aim of the present paper is to discuss how to extend ex-
isting 2d models to the 3d situation. Then, we will show
that the crescentic shape can be explained by the exis-
tence of a sand-flux constraint and a lateral sand-flux. In
the following part, we start by recalling briefly the main
features of 2d modeling of dunes . Then a model for the
3d situation will be presented.

2 The Cc
c class of models

Numerical modeling of dune requires a description of the
effect of wind flow over a sand-bed. Obviously, comput-
ing exact turbulent numerical solution starting with the
Navier-Stokes equations is possible, but this would take a
very long time. An alternative is to use the Cc

c model [23],
based on the following approach.

2.1 Numerical model for the 2d case

Let us call h(x, t) the sand bed profile and q(x, t) the ver-
tically integrated volumic sand-flux. They are linked by
the mass conservation:

∂th + ∂xq = 0. (1)

The sand flux q(x, t) is the main physical parameter
needed to understand dune physics. It cannot locally ex-
ceed a saturated value qsat(x, t), which is the maximum
number of grains that the wind is able to drag per unit
of time at x. Previous work have already focused on the
important role played by the saturation of the sand flux
and the so-called saturation length, lsat [3,22,23]. The na-
ture of this saturation process can be understood in terms
of sand grain inertia: if the wind speed increases, it takes

some time for the grains, initially at rest, to reach the wind
velocity. Different approaches are possible to describe the
evolution of the sand flux towards its saturated value qsat.
However for the sake of simplicity, this saturation process
is here taken into account with the equation,

∂xq =
qsat − q

lsat
. (2)

This equation keeps the most important effect: the exis-
tence of a characteristic length-scale lsat. Moreover, qsat,
depends on the wind shear velocity u∗. Even if the nature
of this dependency is still debated, the saturated flux is
a growing function of u∗ [25–27]. Then a linear expansion
of qsat, as proposed in the innovative work of Sauermann
et al. [21,22] from the model of Jackson and Hunt [28]
leads to:

qsat(x)
Q

= 1 + A

∫
dχ

χ
∂xhe(x − χ) + B ∂xhe(x), (3)

where Q is the saturated flux value on a flat ground and
he(x) is the envelope of the dune. This envelope encages
the dune and its recirculation bubble [12], and is used to
include the boundary layer separation heuristically. Notice
that in the latter equation, he(x, t) appears only through
its first spatial derivative. It is consistent with the assump-
tion that atmospheric turbulent boundary layer is fully
developed, so changes in u∗, and accordingly in qsat are
scale-invariant. From an aerodynamical point of view, this
relation takes into account two effects: a pressure effect,
controlled by A, where the whole shape acts on the wind
flow; and a destabilizing effect, controlled by B, which en-
sures that the maximum speed of the flow is reached before
the dune summit. Although in principle we could compute
the parameters A and B, we prefer to consider them as
tunable parameters. Finally, avalanches are simply taken
into account: if the local slope exceeds a critical value, the
sand flux is increased strongly along the steepest slope.
We will come back to the description of avalanches in Sec-
tion 4. The only scaling quantities are Q and lsat and they
are used to adimensionalize the problem.

In fact, this model belongs to what we called the Cc
c

class. It does not depend strongly on the model use for
the shear stress: other models [29] of shear stress per-
turbations could be used providing that they include the
role of the whole shape (A) and the asymmetry of the
flow (B). The same remarks apply to the charge equation
[21,22] and to the equation linking qsat and u∗. This shows
the robustness of the physics ingredients used in this class
of model. Even though this method does not provide the
most detailed results, this kind of model has been used
successfully to model 2d barchan profile [21–23].

2.2 Speed dispersion and trapping efficiency

As a matter of fact, simulations in 2d show the existence
of two kinds of solutions: dune and dome [23]. The dune
solution has a slip-face that catches all the incoming sand:
the dune can only grow – except if the input sand flux
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is null. On the contrary, for a dome, a large amount of
sand can escape, and if the loss of sand is not balanced
by an influx, the dome can only shrink. Hence, these two
solutions cannot co-exist. To compute the steady shape of
a 3d barchan, it is possible to cut it in “slices” parallel to
the wind direction and, for each slice, to use the 2d model
to compute its evolution. However, in a real barchan, a 2d
slice from the horns seems to behave like 2d dome solution,
while a 2d slice from the main body corresponds to 2d
dune solution. However, in order to make slices from the
main body and slices from the horns coexist, we must
introduce a sand flux which will redistribute laterally the
sand from the center towards the horns. This sand flux
coupling is also needed to overcome the speed dispersion
effect. As a matter of fact, if all the slices have initially the
same shape – but at a different scale ratio – the saturated
flux at the crest is the same for all the slices, as imposed
by turbulence scale invariance and the speed of a slice is
given by:

c =
qc − qout

hc
(4)

where qc and qout are respectively the flux at the crest
and the output flux, and hc is the height at the crest
of the slice. Hence, the smaller the slice, the faster its
motion. This dispersion explains why the barchan takes
a crescentic shape. But to reach a steady state, all the
slices must move at the same speed. Therefore, the lateral
coupling must also induce a speed homogenization.

3 Different lateral coupling mechanisms

What physical mechanisms can lead to a redistribution
of the sand flux on the dune surface? We can think of
three different possibilities: avalanches, lateral wind shear
stress perturbations and grain motions (saltation and/or
reptation).

3.1 Avalanches

First, avalanches develop in three dimensions along the
steepest slope. This creates lateral sand flux in the slip face
area. However, for real barchan dunes, that sand-transport
is directed from the edges towards the center. Accordingly,
the center part grows and slows down while the border
slices shrink and accelerates. This does not constitute a
stabilizing mechanism.

3.2 Wind deflection

The lateral wind deflection is another possibility. Field ob-
servations [1] and numerical simulations [21] tend to show
that, due to its flatness, the dune does not make the wind
flow deviate too much laterally. Consequently trajectories
of grains are not dragged into the lateral direction. Nev-
ertheless, it is always possible to compute the wind speed
perturbations in the lateral direction and see what it gives.
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Fig. 3. Influence of gravity. While trajectories of saltons are
deflected randomly at each collision, the reptons are always
pushed down along the steepest slope.

This has been done recently [30], but there is hardly any
evidence that it is the main physical process responsible
for a lateral sand flux on the dune. On the other hand, it
appears to be an important effect for the development of
lateral instabilities along transversal dunes [31].

3.3 Saltation and reptation coupling

A better candidate is the grain motion. Sand transporta-
tion can be described in terms of two species [27]: grains in
saltation – the saltons – and grains in reptation – the rep-
tons – see Figure 3. Saltons are dragged by wind, collide
with the dune surface, rebound, are accelerated again by
the airflow, and so forth. At each collision, saltons dislodge
many reptons, which travel on a short distance, rolling
down the steepest slope, and then, wait for another salton
impact.

As the wind deflection is weak, we assume that saltons
follow quasi 2d trajectory in a vertical plane (see last sec-
tion), except when they collide with the dune. At each
collision, they can rebound in many directions, depending
on the local surface properties, and this induces a lateral
sand flux. Given that the deflection by collision is strongly
dependent on the surface roughness, we assume that, on
average, the deflection of saltons is smaller than for rep-
tons, which are always driven towards the steepest slope.
In the following derivation, we will neglect the sand flux
deflection due to saltation collisions.

Despite the major role played by saltons in dune
dynamics, the presence of reptons should not be dis-
missed. According to field observations [32,33], reptons
are strongly dependent on the local slope: this can be ob-
served by looking at the relative orientation of the wind
and ripples. On hard ground, ripples are perpendicular to
wind direction, but on a dune their relative orientations
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change with the local slope [33]. Even if one is reluctant
to use the saltation coupling because of its inherent dif-
ficulties, the reptons would still be rolling on the dune
surface: gravity naturally tends to move the grains along
the steepest slope, leading to lateral coupling of the dune
slices. In the following part, we will focus on this coupling
by reptation, which has never been used for the study of
barchan dunes. The saltation process remains important
in this model, since it induces reptation coupling.

4 A 3d model with reptation coupling

4.1 Formulation of the model

As reptons are created by saltons impacts, the part of the
flux due to reptons is assumed to be proportional to the
saltation flux, qsal [1]. Hence, the flux of reptons is simply
written as [34]:

qrep = αqsal(ex − β∇h). (5)

The α coefficient represents the fraction of the total
sand flux due to reptation on a flat bed. In case the
bed is not flat, the flux is corrected to the first order of
the h derivatives, by a coefficient β and directed along
the steepest slope to take into account the deflection of
reptons trajectories by gravity. Assuming that saltation
trajectories are 2d, the total sand flux q is given by:

q = qsal(1 + α)ex − βαqsal∇h. (6)

Moreover, reptation flux is assumed to instantaneously
follow the saltation flux, so that there is no other charge
equation than the saltation flux one:

∂xqsal =
qsat − qsal

lsat
. (7)

Then, the mass conservation equation becomes:
∂th + ∂xqsal + ∇qrep = 0. (8)

Calling D = αβ/(1 + α) and q̃ = (1 + α)qsal, the two
latter equations can be rewritten as:

∂xq̃ =
q̃sat − q̃

lsat
(9)

∂th + ∂xq̃ = D(∂x(q̃∂xh) + ∂y(q̃∂yh)). (10)

Finally, we obtain the same set of equations as in the 2d
Cc
c model, but with one more phenomenological param-

eter, D, which can be understood as the importance of
the lateral coupling, because of lateral deflection of rep-
tons. This formulation appears to be a nonlinear diffusion
equation driven by the non dimensional coefficient D. For
a homogeneous flux solution, QD appears to be a diffusion
coefficient, showing the diffusion-like role of the coupling
coefficient D. Notice that q̃ is no longer the saltation flux,
but the part of the flux that does not depend on the bed
slope. Avalanches are computed in three dimensions us-
ing a simple trick. If the local slope exceeds the threshold
µd, the sand flux is strongly increased by adding an extra
avalanche flux:

qa = E(δµ)∇h, (11)

where δµ is null when the slope is lower than µd and equal
to (δµ = |∇h|2 − µ2

d) otherwise. For a sufficiently large

wind

x

y

z

Fig. 4. Typical initial and final shape of barchan dunes given
by the 3d Cc

c model. Parameters used are A = 9.0, B = 5.0,
D = 0.5 with initially: W0 = 30lsat, H0 = 3lsat.
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Fig. 5. Lateral diffusion of sand flux. The angle of the flux
vectors are magnified 3 times to be clearly visible. Both the
deflection towards the horns and the presence of avalanches
can be observed. Parameters used are the same as for Figures
4 and 6: A = 9.0, B = 5.0, D = 0.5 with initially: W0 = 30lsat,
H0 = 3lsat.

coefficient E, the slope is relaxed independently of E. Fi-
nally, note that quasi-periodic boundary conditions (the
total output flux is reinjected homogeneously in the nu-
merical box) are used to perform the numerical simula-
tions. These boundary conditions are used, first to work
with a constant mass, and second to force the system to
converge towards its steady state. Obviously these bound-
ary conditions constrain the final shape.

4.2 The origin of the crescentic shape

Our 3d Cc
c model depends on three phenomenological pa-

rameters: A and B take into account aerodynamics effects,
and D describes the efficiency of the slices coupling. The
final shape, if one exists, depends on these parameters. For
example, Figure 4 shows a typical 3d final steady state of
a computed barchan dune, which looks likes a real aeolian
one. The arrows in Figure 5 indicate the direction of the
total sand flux on the whole dune shape. The deviation
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Fig. 6. Barchan formation. a) Evolution of an initial cosine bump sand pile: h(x, y) = cos(2πx/W0) cos(2πy/W0). In the
beginning, the horns moves faster than the central part of the dune, leading to the formation of the crescentic shape. The shape
reaches an equilibrium thanks to the lateral sand flux, which feeds the horns. Parameters used are the same as for Figures 4
and 5: A = 9.0, B = 5.0, D = 0.5 with initially: W0 = 30lsat, H0 = 3lsat. b) Evolution of a bi-cone sand-pile with H0 = 1.5lsat

and W0 = 30lsat. This shows that emergence of a crescentic shape is independent on initial shape: the hole in the middle is
filled up, and a crescentic shape forms. In both boxes the height between two level-lines is 0.2lsat.

towards the horns is clearly visible as the sand captured
by the slip-face. Looking at Figure 6 helps us to under-
stand the formation of the crescentic shape of barchan
dune. Starting from a sand-pile, some horns will appear
and since they are faster than the center slice of the dune,
a crescentic shape appears. Now, let us consider a slice
and let us call qx, the excess flux due to reptons coming
from the lateral sand flux, qin the incoming saltation sand
flux brought by the wind and qe the flux due to erosion.
The existence of a saturated flux imposes:

qe + qx + qin < qmax
sat . (12)

where qmax
sat is the maximum value of the saturated flux

on the given slice. Thus, if the excess flux qx increases,
the erosion flux, qe, decreases. As the speed of the slice
is governed by the erosion, the slice slows down. After a
while, the horns receive enough sand from the main body
to decrease their speed and to compensate the output flux.
Finally the speed of all slices is the same and the barchan
moves without changing its shape. Moreover, the center
part, which would grow without lateral coupling, can now
have an equilibrium shape, since all the extra flux is devi-
ated towards the horns. Furthermore this coupling process
is stabilizing with respect to local deformation. If a slice
increases in height, the excess sand flux leaving the slice
will increase, and the deformation will shrink. Similarly,
starting from a two maxima shape, the part of the flux
sensitive to the local slope tends to fill up the gap be-

tween the two maxima: the whole mass is redistributed
and a single barchan shape is finally obtained – see Fig-
ure 6. This agrees with the apparent robustness of the
crescentic shape observed on the field. Whatever the exter-
nal conditions are, the same morphology is roughly found
everywhere where barchans develop. Hence, this lateral
coupling helps us to understand such barchan structures.
However, we have no clue about the possible value of this
coupling coefficient D and it is therefore useful to study
the influence of D on the barchanic shape.

5 Significance of the coefficients

5.1 The influence of the coupling coefficient D

As it can be seen in Figure 7, D has a crucial influence
on the global morphology. First of all, for a small D,
(i.e. a small lateral sand flux), the flux escaping from the
tip of the horns is mainly due to qin and to the erosion
flux, qe. Therefore, erosion may be important, and the
horns may move quickly. Thus, during the transient, the
barchan elongates. On the contrary, for a larger D, the
lateral flux received by the horns, qx, is larger and then
the erosion is less important. The horns move slower and
the elongation is shorter.

Secondly, the width of the horns is also dependent on
D. For a large D, the deflected flux is large. However,
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Fig. 7. Different 3d shapes obtained for different values of D
and for the same initial sand-pile. Parameters used (except for
D coefficient) are the same than for Figures 4, 5 and 6. Com-
putations are performed with quasi-periodic boundary condi-
tions. The barchan central slice is represented on the right.
Notice that for D = 0, a steady state is reached because of
lateral sand redistribution due to avalanches on the windward
side. However, there is a sharp edge which separates the dune
in two part, leading to an arrow shape rather than to a cres-
centic shape.

as the output sand flux cannot exceed a maximum value,
horns have to be wide in order to transport away all the
incoming sand, and indeed, the width of the horns in-
creases with D. This simple explanation is confirmed by
numerical simulation, as depicted in Figure 7 and Fig-
ure 8. Measuring the width of the horns in the desert may
be a convenient way to estimate the value of D from field
observations.

Finally the aspect ratio of the dune, h/w, varies with
D, because the coupling mechanism tends to diminish
slopes. In other words, the dune tends to spread out lat-
erally when D increases, sometimes leading to structures
without a slip-face: 3d dome solution. In this case, sand
can escape from the whole transversal section of the dune
and the output flux is then higher than for the dune so-
lution. Basically the transition from 3d dune to 3d dome
situations occurs when the horn width is equal to half the
dune width. This corresponds approximately to D = 2.0
with the parameters A = 9.0 and B = 5.0. For too large

Fig. 8. Dependence of barchan dune properties on the coupling
coefficient D. The case with D = 0 is taken has a reference. The
properties are: (a) width of a horn, (b) total width, (c) equilib-
rium input flux, (d) speed of the dune, (e) total length (includ-
ing horns), (f) length of the center slice, (g) maximum height. A
typical output flux cross section is shown in the upper left part
of the graph: the width of the horns is measured by measuring
the width of the flux peaks. The initial sand pile is always a co-
sine bump defined by h(x, y) = H0 cos(2πx/W0) cos(2πy/W0)
with W0 = 20 and H0 = 2.0.

a diffusion, the dune becomes very wide and flat, without
a slip-face, and remains unsteady.

5.2 The influence of coefficients A and B

However, looking only at the D influence is not accurate
enough to describe qualitatively the influence of diffusion.
In fact, the shape is the result of three physical effects gov-
erned by the parameters A, B and D. Figure 9 presents
a phase diagram with D kept constant at a value of 0.5.
Many different morphologies can be observed, from a large
and thin unsteady crescent to a flat unsteady sand patch,
and with steady barchans in-between. First, A governs the
stability of the sand bed, and then a large A tends to flat-
ten the sand-pile. Increasing B, on the other hand, forces
the slope to increase and to nucleate a slip-face. Thus,
when the ratio A/B is high, there is hardly a slip face. On
the contrary, when it is low, the slip face develops on the
whole dune. Thus the A/B parameter controls the way
the slip-face appears. Secondly, one can observe that the
dunes obtained with a constant ratio A/B have different
morphologies. This shows that for small A and B the cou-
pling coefficient D plays an important role in the shaping
of the dune. Field measurements of the horns’ width and
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Fig. 9. Evolution of the same initial cosine bump sand pile
(h(x, y) = cos(2πx/W0) cos(2πy/W0) with W0 = 30lsat, H0 =
3lsat) changing the value of the parameters A and B. D is kept
constant and equal to 0.5. The dashed lines separate qualita-
tively the different stability and shape domains. The dome do-
main is divided into two parts depending on the steadiness of
the dome solution.

the minimal size of barchans should help us to give an es-
timation of these parameters. The following table provides
with a summary of the different qualitative effects of A,
B and D.

physical mechanism Main effect when increasing
A curvature effect L increases,

W decreases.
B slope effect Slip-face appears easily,

∂xh increases, W increases.
D Lateral coupling H decreases,

W and horns width increase,
output flux increases.

Finally, the initial sand-pile does not always reach a con-
stant shape. For large A/B no steady state appears. This
is due to the fact that the erosion is so strong that it
cannot be balanced by the influx, and the sand-pile just
becomes flatter and flatter. On the contrary, for a large
B/A, a thin unsteady crescent appears. Finally, for a large
D (compared to A and B) steady and unsteady dome so-
lutions are produced by the numerical model. This shows
the importance of A, B and D on the shape and on the
minimal size of computed barchan dunes.

6 Conclusion

We have seen that reptation can be used to describe the
3d crescentic shape of barchan dunes. As reptons are sen-
sitive on the local slope, they induce a lateral sand flux.
This allows a given sand-pile blown by the wind to reach
an equilibrium shape, despite varying “slices” speed and
intrinsic differences between the main body and the horns.
The crescentic shape comes from two mechanisms, which

compete with each other. The first one is the speed dis-
persion within the dune: the small height slices are faster
than higher ones, leading to the crescentic shape, and
eventually to the destruction of the barchan dune. The
second one, is the lateral flux deflection that reduces the
horns’ speed by decreasing the erosion flux on them. It
leads to the homogenization of the speed of the different
slices, and eventually to the propagation of a steady state
dune or a steady sand dome. This mechanism is efficient
since the overall excess flux can escape from the horns. In
other words, barchanic shape appears to be the very basic
shape taken by any sand-pile blown by a unidirectional
wind. Now that the steady shape of barchan dunes seems
to be well described, it would be interesting to study the
dynamics of such a structure placed far from equilibrium
conditions, because, in the field, input flux has no reason
to be related to the output flux of a dune.

As a matter of fact, in this paper, barchans have been
numerically obtained with quasi-periodic boundary con-
ditions. If standard boundary conditions are used, a typi-
cal barchan dune takes the crescentic shape, for the same
reasons as the ones exposed in this article, but it keeps
growing or shrinking depending on the incident sand flux,
either higher or lower than the sand flux escaping from the
horns [24]. This point is crucial because it suggests that
single real barchan dunes are not steady structures and,
moreover, it shows that a crescentic shape can form even if
the dune is not in an equilibrium state. Therefore, further
investigations are still required to understand the long-
term existence and shape of barchan dune in the field.
In our model we have neglected saltation coupling; but
we believe that it is not the dominant effect. Moreover, it
could easily be taken into account by adding a new cou-
pling coefficient dedicated to lateral deflection of saltons.

Finally, it appears that depending on the coupling co-
efficient, D, the solution can either be a 3d dome or a 3d
barchan. Similarly, changing A and B can lead to different
shapes, and different behavior. It might be interesting to
understand the transformation of a 3d sand patch, steady
or unsteady, into a barchan dune because of fluctuations
of these parameters, and particularly of D variations. As
a matter of fact, these parameters may depend on exter-
nal conditions such as grains size distribution, humidity
or wind fluctuation.
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